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Bowman and McPherson-based spectrometers were 1.0 and 0.3 nm, 
respectively. First, the PL spectrum was obtained in air by using beam-
expanded laser lines. Without disturbing the sample geometry, 5 M 
OH"/0.1 M S2O8

2" electrolyte was added and the EL spectrum was 
obtained at the potential of interest by the pulse sequence given above. 
The electrolyte was then changed to 5 M OH" and the PL spectrum 
taken at the same potential used in the EL experiment, again without 
altering the sample geometry. 

EL Efficiency. The integrated EL efficiency, #EL, was estimated by 
placing the probe head of the EG & G radiometer as close as possible 
(within ~ 1 cm) to the sole exposed CdSe crystal face. The electrode was 
pulsed to a given potential for 1 s as described above and the total emitted 
energy (in /iJ) per pulse measured with the EG & G Model 550-3 ac
cessory. Total coulombs passed during this pulse were measured with 
the digital coulometer. These measurements were repeated as a function 
of potential. The instantaneous, steady-state EL efficiency, <pEL, was 
determined in the same geometry and has been described previously, 
differing only in the use of the EG & G radiometer.6 A measurement 
of 4>r and 4>EL in the same geometry was made by first placing the EG 
& G radiometer about 3 cm from the electrode and angled so that it 
would not obstruct a laser beam incident "head on" on the electrode. The 
radiometer probe head was then covered with a Laser-Gard Ar ion laser 
goggle window (optical density of 11 at 514.5 nm) on top of a Corning 
2-64 filter and <JEL measured. The electrolyte was then changed to 5 M 
OH" and the CdSe electrode irradiated with 514.5-nm light at the po
tential used in the <j>EL determination. Emitted light was detected with 
the radiometer and sample in the same geometry employed for the 0EL 
measurement; the incident light was detected with the Scientech power 
energy meter. This experiment was repeated at several potentials. The 
electrolyte was then made 0.1 M in S2O8

2" and <j>EL measured at several 
potentials. Finally, 0EL was determined with the filters removed and the 
radiometer repositioned to minimize the distance to the electrode. The 
filter-covered radiometer was also placed in several other geometries to 

I. Introduction 

It is well known that the energy of a molecule can often be 
expressed as the sum of the energies of its individual bonds and 
that these bond energies can frequently be "transferred" from one 
molecule to another.1"3 The degree to which bond energies are 

determine to what extent <t>, and <j>El scaled together. It should be 
mentioned that for all of the efficiency measurements described in this 
section the flat-response window of the radiometer was removed, thereby 
minimizing the electrode-radiometer distance. Consequently, measured 
values were corrected by a factor determined at larger distances where 
the window could be added and removed without disturbing the relative 
electrode-radiometer geometry; the correction factor used for the CdSe 
sample was in good agreement with the manufacturer's value for the 
wavelength region involved. For the experiments in this section, elec
trolytes were stirred magnetically while being N2 purged. 

Effects of Surface Treatment on PL Properties. A cell suitable for 
PEC studies was assembled in the Aminco-Bowman spectrometer. PL 
spectra of CdSe were obtained sequentially in air, water, and 3 M NaOH 
by using a single geometry and a resolution of 1.0 nm. The beam-ex
panded 514.5-nm line of the Ar ion laser was masked to fill the CdSe 
surface and delivered ~2 mW of power in all experiments. The Corning 
3-66 filter and neutral density filters were used while the emission band 
and reflected excitation spike, respectively, were scanned. Without dis
turbing the geometry, the electrode was brought into circuit in the 3 M 
NaOH electrolyte at 0.0 V vs. SCE and irradiated until ~7 mC of 
charge had been passed (PEC etching). At this point the electrode was 
taken out of circuit. A stable emission intensity was observed after 
several seconds at which time the emission spectrum was recorded under 
conditions identical with those previously used in this experiment. The 
PEC etch was repeated for various irradiation periods, and spectra were 
recorded after each treatment. Solutions were stirred by a N2 purge. 
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invariant from one molecule to another has been thought to depend 
on the extent to which each molecular fragment experiences similar 
attractions and repulsions in different environments.3 This concept 
of bond or fragment transferability has played a fundamental role 
in shaping our concepts of chemical bonding and structure. 

A simple example illustrating these points is a comparison of 
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Abstract: A general problem that arises in the treatment of substituent effects on rates and equilibria of chemical reactions 
is evaluating the changes in energy and geometric structure that occur when a fragment is removed from a molecule and replaced 
by a new one. This question is approached from an ab initio viewpoint using analytical SCF Hartree-Fock theory. For different 
series of compounds, relative substituent effects on reaction rates, equilibria, or molecular properties are often very similar 
and can be described in terms of group contributions plus interactions between groups. The origin of this phenomenon is examined 
by considering a common geometry constraint, which has been generalized to define a hemistructural relationship. For diatomics 
(A-A, A-C, C-C), it is equivalent to bond-length additivity. An important consequence of the hemistructural relationship 
is that all of the information necessary for determining the properties of the hemistructural molecule (A-C) can be obtained 
from the two parent structures (A-A and C-C). No new information is needed. Ultimately, all empirical observations of 
transferable substituent effects and molecular properties can be traced to this fact. The hemistructural relationship serves 
as a fundamental basis for transferability within the Born-Oppenheimer, nonrelativistic limit. Some of the consequences of 
this transferability are examined, and it is shown that the response of the total energy (E), the kinetic energy (T), and the 
total potential energy (V) to multiple substituent effects is fundamentally simpler than the corresponding response of the orbital 
energy (.E0) and the individual potential energy components (Vm, Kne, Vx). The Hellmann-Feynman theorem is used to show 
that when fragment transfer (A-A + C-C —* 2A-C) is described by first-order corrections to the wave function, an equilibrium 
A-C bond length will occur at the mean of corresponding A-A and C-C equilibrium bond lengths for arbitrary A,C fragments. 
An important result is that bond length and bond energy additivity can be observed even when large interactions (compared 
to deviations from additivity) occur between the A1C fragments. Additivity is observed because compensating changes in electronic 
structure take place in the two molecular fragments. Such a result is a fundamental departure from existing ideas on substituent 
effects and suggests that models of molecular structure based on interactions between transferable groups will require significant 
revision. 
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Table I. Experimental Heats of Atomization and Ionization Potentials of Benzene and Azabenzenes 

AHA 

(kcal/mol)0 IPy (eV)b 

LOJ 
benzene 

pyridine 

N 

pyrazine 

pyrimidine 

1318.2 

1194.3 

1070.9 

1070.8 

9.24 9.24 

9.59 (n) 

9.63 (n+) 

9.73 (n-) 

9.73 (^A) 10.50(TTS) 

10.18 (TTA) 11.35 (n-) 11.77 (TTS) 13.9 (TT) 

10.41 (TTS) 11.23 (n+) 11.39 (TTA) 13.9 (TT) 

a Reference 6. b Reference 7. 

AHf
m for benzene, toluene, and p-xylene. The three experimental 

heats of formation are 19.82, 11.95, and 4.29 kcal/mol, respec
tively.5 The average heat of formation for benzene and p-xylene 
is 12.055 kcal/mol, which deviates by only 0.105 kcal from the 
experimental value for toluene. This close correspondence to 
additivity can be easily "explained" by two arguments: (1) the 
"electronic structures" of the methyl groups, the benzene rings, 
and the 1,4 hydrogens do not depend on the particular molecule 
of which they are a part; (2) interactions between the 1- and 
4-substituents are neglected.4 

However, there are cases of comparable additivity where the 
applicability of the "constant structure" argument could be 
questioned. For example, the heat of atomization (AHA) for 
pyridine is only 0.25 kcal lower than the mean heats of atomization 
for benzene and pyrazine or pyrimidine (Table I).6 This degree 
of additivity is somewhat surprising, since the structural pertur
bations are taking place within a "delocalized" aromatic ring. It 
may seem a bit rash to assume that each of the two nitrogens in 
pyrazine or pyrimidine is simply the electronic equivalent of the 
nitrogen in pyridine. If the electronic energy of pyrazine or 
pyrimidine is analyzed in classical terms, we might expect to find 
a dipolar contribution arising from the interactions of the two 
nitrogens. Classically, this might be described as an internal 
dipole-dipole repulsion, and it should lead to a breakdown in the 
additivity of AHA for pyrazine and pyrimidine, since the effect 
is not only different for pyrazine and pyrimidine, but is absent 
for pyridine and benzene. 

If the ionization potentials7 of pyrimidine, pyridine and benzene 
(see Table I) are compared and interpreted within the framework 
of Koopmans' theorem, it is apparent that additive heats of 
atomization do not necessarily require additive orbital energies. 
The antisymmetric ir orbital of pyridine (ir B2) is 0.585 eV (13.5 

(1) (a) L. Pauling, "The Nature of the Chemical Bond", Cornell University 
Press, Ithaca, N.Y., 1960. Some recent extensions of Pauling's work include: 
(b) J. C. Phillips, "Bonds and Bands in Semi-conductors", Academic Press, 
New York, 1963; (c) N. D. Epiotis, J. R. Larson, R. L. Yates, W. R. Cherry, 
S. Shaik, and F. Bernardi, J. Am. Chem. Soc, 99, 7460 (1977); (d) B. M. 
Gimarc, S. A. Khan, and M. C. Kohn, ibid., 100, 1996 (1978); (e) J. F. 
Liebman, ibid., 96, 3053 (1974); (f) J. R. Liebman and J. S. Vincent, ibid., 
97, 1373 (1975). (g) S. W. Benson and J. Buss, J. Chem. Phys., 29, 546 
(1958). 

(2) (a) T. L. Allen and H. Shull, / . Chem. Phys., 35, 1644 (1961); (b) 
M. Levy, W. J. Stevens, H. Shull, and S. Hagstrom, ibid., 61, 1844 (1974). 

(3) R. F. W. Bader and P. M. Beddal, Chem. Phys. Lett., 8, 29 (1971). 
(4) Strictly speaking, the 1,4 interactions in toluene must be the average 

of the 1,4 interactions in benzene and p-xylene. 
(5) D. R. Stull, E. F. Westrum, Jr., and G. C. Sinke, "The Chemical 

Thermodynamics of Organic Compounds", Wiley, New York, 1969. 
(6) J. Tjebbes, Acta Chem. Scand., 16, 916 (1962). 
(7) (a) R. Gleiter and E. Heilbronner, Angew. Chem., Int. Ed. Engl, 9, 

901 (1970); (b) R. Gleiter and E. Heilbronner, HeIv. Chim. Acta, 55, 255 
(1972). 

kcal) higher than the corresponding mean for pyrimidine and 
benzene, while the symmetric TT orbital (ir B1) is 0.675 eV (15.6 
kcal) lower than the mean. The combined deviation from the mean 
amounts to 2.1 kcal which is an order of magnitude larger than 
the deviation observed for the heats of atomization (0.20 kcal). 

The ionization data (through Koopmans' theorem)8'9 show that 
the lone pair orbitals of pyrazine and pyrimidine are split by 
roughly 40 kcal. Significantly, the splitting is unsymmetrical 
relative to the lone pair orbital of pyridine, so that the lone pair 
orbital energy of pyridine is over 20 kcal higher than the mean 
lone pair orbital energy of pyrazine or pyrimidine. These ob
servations do not provide a convincing argument that the additivity 
observed in the heats of atomization is due to a uniform electronic 
structure of the nitrogens in pyrazine, pyrimidine, and pyridine. 

Additivity is also frequently observed for electronic energies 
calculated using SCF Hartree-Fock techniques.10 In one such 
example,10a,b the electronic energy of pyridine has been calculated 
as -210.88630 au (Table II). The mean electronic energy of 
benzene and pyrazine (using the same basis set and experimental 
geometries) is -210.89019 au. The deviation amounts of 2.4 kcal. 
By contrast, the sum of the orbital energies for pyridine deviates 
from the mean by over 65 kcal (Table II). The core orbitals alone 
contribute 8 kcal to the total deviation. The core orbitals of the 
nitrogens in pyrazine are influenced by the other nitrogen since 
the orbital energy of each nitrogen Is core is about 30 kcal lower 
than in pyridine. The lowering of the N-Is core energies in 
pyrazine relative to pyridine shows that the field experienced by 
an electron close to the nucleus of the 1-nitrogen is altered sub
stantially by replacing a C-H group at the 4 position with another 
nitrogen. Even though both C-H and N carry the same nuclear 
charge and the same formal electronic charge, the effective field 
of each group at even "remote" centers in the molecule is different. 
The C-H and N at the 4 position are not behaving as either 
spherical charge distributions centered on nuclear point charges 
or as multipoles whose field falls off so rapidly that it is ineffective 
near the 1 position. 

Constant electronic structure and lack of interaction between 
substituents are sufficient conditions for observing additivity re
lationships. 2'3,11 It has also been thought that these conditions 

(8) T. A. Koopmans, Physica, 1, 104 (1933). 
(9) M. J. S. Dewar, "The Molecular Orbital Theory of Organic 

Chemistry", McGraw-Hill, New York, 1969. 
(10) (a) R. E. Christoffersen, / . Am. Chem. Soc. 93, 4104 (1971); (b) D. 

W. Genson and R. E. Christoffersen, ibid., 94, 6904 (1972); (c) R. J. 
Buenker, J. L. Whitten, and J. D. Petke, J. Chem. Phys., 49, 2261 (1968); 
(d) J. D. Petke, J. L. Whitten, and J. A. Ryan, J. Chem. Phys., 48, 953 (1968); 
(e) J. Almlof, B. Roos, U. Wahlgren, and H. Johansen, J. Electron Spectrosc. 
Related Phenom., 2, 51 (1973). 

(11) For example: (a) J. D. Cox and G. P. Icher, "Thermochemistry of 
Organic and Organometallic Chemistry", Academic Press, New York, 1970; 
(b) J. Gasteiger and O. Mammer, Tetrahedron, 34, 2939 (1978). 
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Table II. Calculated Energies of Benzene, Pyridine, and Pyrazine 

Murdoch 

Er^(Wi) 

-197.354 137 

-210.886 30 

-224.426 24 

-230.374 5 

-246.326 53 

-262.254 66 

-230.476 

-246.417 

-262.352 

8 £ m e a n a 

kcal 

2.4 

-7.5 

-1.88 

£o(au)g 

-65.0277 

-69.516 

-74.214 

-78.750 

-83.70101 

-88.9051 

-77.655 

-82.549 

-87.503 

g^meanb 

kcal 

65.8 

79.4 

18.8 

£gore(au)S 

-56.2757 

-60.230 

-64.210 

-68.120 

-72.60052 

-77.1389! 

-67.523 

-71.997 

-76.501 

kcal 
A e N i s 

(kcal/mol) 

©• 

(O) 

8.1 

-35.8,-23.8 

18.2 0 

-28.7 

9.4 0 

-20.4 

a &E^e&a=ET(pyhdine) - '/,[^(benzene) + £T(pyrazine)]. b SE™e&n = ^(pyridine) - '/2[^(benzene) + £p(pyrazine)]. 
5£,™core =-^ore(Pyridine) - ' /^-""(benzene) + ^""(pyrazine)!. d Reference 10a,b. e Reference 10c,d. 'Reference 1Oe. „ v„1= „ "(pyridine) - ' / , [^"(benzene) + ^016(pyrazine)]. d Reference 10a,b. e Reference 10c,d. 

and E^oie are the sum of the appropriate orbital energies (ref 10) and have not been multiplied by two. 
'En 

are necessary.2'3 Support for this idea has come from first-order 
perturbation theory,9 which shows that additive changes in the 
Hamiltonian (H1 + H2) translate into additive changes in the 
first-order energy, o\Em

(1): 

«£<!> = <tf»|H, + H 2 | ^> = < ^ | H , | ^ > + <^ |H 2 | vO (1) 

where \p°„ is the unperturbed wave function. Since the first-order 
energy correction is additive and does not involve changes in wave 
function, it may seem natural to associate energy additivity with 
constant electronic structure. 

The second-order energy correction is given by 

SEtf = Z < ^ | H , + H2IiAH)/(El ' Et) (2) 
k*m 

The second-order energy correction is due to changes in wave 
function and is generally nonadditive because of the squared term 
in the numerator of eq 2. Consequently, it has been thought that 
energy additivity will hold to the extent that the wave function 
remains constant and second-order energy corrections are neg
ligible. Energy additivity apparently depends on the degree to 
which electronic structure is constant and the degree to which net 
interactions between substituents are absent or constant. However, 
this conclusion is not in accord with experimental examples6 (e.g., 
pyridine and others5) which indicate that additivity can apparently 
be observed even when large interactions (compared to deviations 
from additivity) occur between substituents. This, in turn, implies 
that compensating changes in electronic structure take place in 
other portions of the molecule so that additivity is somehow 
preserved. Such a result is a fundamental departure from existing 
ideas on substituent effects and would not be anticipated from 
models based on classical or traditional concepts. This prompts 
us to find a more general description of the energy changes and 
structural perturbations which accompany replacement of one 
molecular fragment by another. 

II. A Theory of Nuclear Substitution 

A. Hemistructural Relationship: Definition. In considering 
the energetic consequences of replacing a subset of nuclei in a 

molecule, it is useful to distinguish between electronic structure 
and geometric structure. Geometric structure pertains to the 
coordinates of the nuclei, while electronic structure includes the 
spatial distribution of electron density. It is well established that 
bond lengths and bond angles are often transferable between 
molecules and that bond lengths frequently can be predicted by 
assigning covalent radii to various atoms.1 In such a case, an origin 
can be defined for each of three diatomic structures (e.g., A-A, 
A-B, B-B) so that the nuclear coordinates of "A" in A-B are 
the same as for the corresponding "A" in A-A. Likewise, the 
coordinates of "B" in A-B are the same as for the corresponding 
"B" in B-B. 

This idea can be generalized in order to specify a hemistructural 
relationship. If an origin can be defined so that a subset of nuclei 
in molecule C have the same nuclear charges and coordinates as 
a subset of nuclei in molecule D and the remaining nuclei in C 
have the same nuclear charges and coordinates of a subset of nuclei 
in molecule E, then C is hemistructural to D and E. C can be 
referred to as a hemistructural molecule which is derived from 
the parent molecules, D and E. It would also be possible for C 
to share a hemistructural relationship with more than two other 
molecules, and further generalization can be introduced by al
lowing C to represent more than a single molecule. 

A simple example of a hemistructural relationship is illustrated 
by the geometry of toluene compared to the corresponding ge
ometries of benzene and p-xylene. To a good approximation,12 

one-half of the toluene molecule can superimpose on a corre
sponding half of p-xylene, while the other half of toluene can 
superimpose on benzene. As a result, toluene is approximately 
hemistructural to benzene and p-xylene. 

It is interesting that the hemistructural relation holds to a 
reasonable degree for the examples of energy additivity discussed 
in section I. The C-C and C-N bond lengths in benzene and the 
azabenzenes are essentially constant,13 as are the corresponding 
bond lengths and bond angles in benzene, toluene, and p-xylene.12 

(12) "Tables of Interatomic Distances and Configuration in Molecules and 
Ions", The Chemical Society, London, 1958. 
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Other examples include methane, bromomethane, and dibromo-
methane where heats of formation are additive to within 0.5 
kcal.5,14 In addition, it is noteworthy that the hemistructural 
relation also holds for cases of energy nonadditivity.1 This suggests 
that the hemistructural relationship is a suitable point to begin 
a theoretical study of substituent effects and the initial breakdown 
from energy additivity that occurs for larger perturbations. We 
shall initially inquire as to what constraints the hemistructural 
relationship imposes upon the total energy and the nuclear forces 
of the hemistructural molecule. In Appendix II, it is shown that 
the hemistructural geometry may correspond to an equilibrium 
geometry as a consequence of these constraints.15 

B. The Hemistructural Relationship: A Fundamental Basis of 
Transferability. The theoretical consequences of the hemistructural 
relationship (at the Hartree-Fock level) can be discovered by 
examining how the Fock matrix differs for the three molecules 
sharing the hemistructural relationship. For convenience the 
structures of the three hemistructural molecules can be symbolized 
as 

A — B - A (3) 

C—B—A) (4a) 

A — B - C ) (4b) 

C—B—C (5) 
where A, B, and C represent molecular fragments containing 
arbitrary nuclei. ABC is hemistructural to ABA and CBC, and 
it could be said that the three molecules form a hemistructural 
set. 

The Fock matrix elements are dependent upon the kinetic 
energy integrals, electron repulsion integrals, nuclear-electron 
attraction integrals, and the molecular orbital coefficients of the 
occupied MO's. Since we are interested in comparing Fock matrix 
elements, it will be advantageous to evaluate the various integrals 
using a basis set which is mathematically complete16 and not 
necessarily associated with particular nuclei. As long as the basis 
set is complete,16 it is unnecessary to change basis functions when 
the nuclei are altered. The ith basis function can be represented 
as (J)1. 

The kinetic energy integrals are of the form: 

Ti1 = - ^ < < k | V a % > (6) 

The kinetic energy operator, Va
2, contains coordinates of electron 

(13) (a) P. J. Wheatley, Acta Crystallogr., 10, 182 (1957); (b) P. J. 
Wheatley, ibid., 13, 80 (1960); (c) B. Bak, L. Hansen-Nygaard, and J. 
Rastrup-Andersen, J. MoI. Spectrosc, 2, 361 (1958); (d) V. Schomaker and 
L. Pauling, J. Am. Chem. Soc, 61, 1769 (1939); (e) E. G. Cox, D. W. J. 
Cruickshank, and J. A. S. Smith, Proc. R. Soc. London, Ser. A, 247, 1 (1958). 

(14) (a) D. Chadwick and D. J. Millen, Trans. Faraday Soc, 67, 1539 
(1971); (b) C. C. Costain, J. Chem. Phys., 29, 864 (1958); (c) W. Gordy, 
J. W. Simmons, and A. G. Smith, Phys. Rev., 74, 243 (1948). 

(15) The examples cited above are not intended to lead the reader into 
believing that the hemistructural relationship is limited to equilibrium geom
etries. Note that each point on the A-B-C potential surface will correspond 
to a point on the A-B-A potential surface where the geometric coordinates 
of the A1B fragments are identical and to a point on the C-B-C potential 
surface where the geometric coordinates of the B,C fragments are identical. 
Each group of three corresponding points constitutes a hemistructural set, and 
there will be one hemistructural set for each point on the A-B-C potential 
surface (i.e., infinite). The examples noted above (e.g., benzene, toluene, and 
xylene) are special cases where energy minima on three potential energy 
surfaces are connected through a hemistructural relationship. See Appendix 
II for a further development of this idea. 

(16) (a) Examples of complete basis sets include three-dimensional 
Cartesian polynomials and spherical Gaussians located at all possible points 
in space with all possible exponents (also see: S. F. Boys, Proc. R. Soc. 
London, Ser. A, 200, 542 (1950). (b) For more detailed discussion, see: B. 
Klahn and W. A. Bingel, Int. J. Quantum Chem., 11, 943 (1977). (c) 
Non-nuclear-centered basis sets are commonly used in numerical calculations 
dealing with solid-state phenomena. For example, see: (d) G. P. Kerker, S. 
G. Louie, and M. L. Cohen,, Phys. Rev. B, 17, 706 (1978); (e) K. H. Lau 
and W. Kohn, Surf. Sci. 75, 69 (1978); (f) N. H. March and M. P. Tosi, 
Proc. R. Soc. London, Ser. A, 330, 373 (1972). 

a and is independent of the nuclear coordinates. Since $,• and 
4>j do not depend on nuclear coordinates, the same kinetic energy 
integrals can be used in setting up the Fock matrices for ABA, 
ABC, and CBC. 

The electron repulsion integrals are of the form: 

• ( 

V&" = ( * , (a)0/a) 
c,0 > > -

<t>kw)4>,(0)} = mi) (?) 

The operator, \/raS, depends on the distance between electron a 
and electron /3 and is independent of nuclear coordinates. The 
basis functions 4>,, <j>j, 4>k, 4>t are also independent of nuclear 
positions so that the same electron-repulsion integrals can be used 
for the Fock matrices corresponding to ABA, ABC, and CBC. 
The nuclear-electron attraction integrals are of the form: 

VJl - -z.l 4>i\—\<i>j) (8) 

The operator, 1 /r,a, depends on the coordinates of nucleus a and 
electron a, while the basis functions </>,• and fy are independent 
of nuclear position. As a result, each nuclear attraction integral, 
V1Il, depends on the coordinates of only one nucleus. This co
ordinate for ABC can be obtained from one of the two parents, 
ABA or CBC, if nuclear geometry is additive (i.e., the hemis
tructural condition is applicable). Consequently, each of the 
nuclear-electron attraction integrals for ABC can be obtained from 
one or the other of the two structures (ABA and CBC) to which 
it is hemistructural.15 

The fundamental significance of the hemistructural relationship 
is now apparent: the hemistructural relationship is special, since 
all integrals necessary for constructing the Fock matrix for hemi
structural ABC (i.e., Tjj, V^', V&) can be obtained from the two 
parent structures (ABA or CBC). If ABA, ABC, and CBC are 
not members of the same hemistructural set,15 the VlI f° r ABC 
will not necessarily be transferable from ABA and CBC, and new 
information (i.e., new V1Il) m u s t De introduced to construct the 
Fock matrix for ABC. Consequently, the properties of ABC will 
no longer depend on the same parameters or information (i.e., 
Tip f » ' , Kl) as ABA and CBC, and the relationship between 
the three structures will become more obscure. The hemistructural 
relationship is unique in the sense that all of the information (i.e., 
Tij, V£', V1Il) necessary for constructing the Fock matrix and for 
determining the Hartree-Fock wave function and energy of the 
hemistructural molecule (ABC) can be transferred from the parent 
structures (ABA and CBC).17 This is also true for the exact 
nonrelativistic energy and wave function since correlation effects 
can be introduced through configuration interaction in terms of 
Slater determinants which are constructed from the Hartree-Fock 
orbitals.18'19 The fact that the hemistructural molecule contains 
only information which is common to the parents (i.e., geometric 
coordinates, TtJ, V£', V1H) places an important constraint on the 
relationship of the hemistructural wave function and energy with 
the wave function and energy of each parent. In this sense, the 
hemistructural molecule contains no new information. 

One expected consequence is that properties of the hemi
structural molecule may often be related in a simple manner (e.g., 
additive or quadratic) to the properties of the two parents, but 
this, of course, will not be general. Nonetheless, once the Fock 
matrix for ABC is defined, the question of how properties of the 
hemistructural molecule depend on information transferred from 
the parent structure is solved in principle. In the next section, 
we will examine some generalizations which can be applied without 
detailed computation. 

(17) The transferability noted at the integral level translates into trans
ferability at the density matrix level. See eq 1-1, eq I-10, and the discussion 
in Appendix I. Note that the density matrix elements are not simply additive, 
but can be constructed from transferable terms. 

(18) E. A. Hylleraas, Z. Phys., 48, 469 (1928). 
(19) F. L. Pilar, "Elementary Quantum Chemistry", McGraw-Hill, New 

York, 1968. 
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C. How Is the Energy of the Hemistructural Molecule Related 
to the Energies of the Parent Molecules? a. The Hemistructural 
Fock Matrix. Since the large majority of ab initio calculations 
on molecules are based on Hartree-Fock theory, it would be useful 
to answer this question at the Hartree-Fock level. Extending the 
result to include correlation effects is straightforward and will be 
presented later. 

The Fock matrix element, Fy, for a closed-shell system is given 
by 

F y = HJ- + E L Pkl[«jkl) - 1Mi)CjI)] (9) 

where Hy is the core matrix element which is constructed from 
the sum of the corresponding kinetic energy matrix element 

T 0 - r < , = ~ < 0 ( | V a V y > (10) 

and the nuclear-electron attraction matrix element,9 

nuc / I 1 I \ 
v& = - E z . U , — Uj) (H) 

» \ r»al / 
P w is an element of the density matrix and is given by 

OCC 

P*/ = 2Ea,*aw (12) 
V 

where avk represents the coefficient of the kth basis function in 
the Kh MO. In eq 9, the term involving the double summation 
over k and / introduces the average effects of electron repulsion 
so that 

\'L = E E PuWJkD - Y2VkJl)] (13) 
k i 

The kinetic energy matrix, T, for the hemistructural molecule 
is identical with those for the corresponding parents (eq 6 and 
10), while each nuclear-electron attraction matrix element (V^) 
consists of a contribution from each parent molecule (eq 8 and 
11). The coulomb integrals, (ijkl), and the exchange integrals, 
(ikjl), are common to the hemistructural molecule and its parents, 
but the electron repulsion matrix, VM, will change since the wave 
functions (and therefore Pw) for the hemistructural molecule and 
its parents are different. It is important to recognize that a 
perturbation (e.g., a change in nuclear charge) produces a change 
in F only through Vne and Pw. 

b. The Hemistructural Wave Function. It is useful to note that 
the perturbed molecular orbitals, ip, (e.g., for ABC or CBC), can 
be expanded in terms of the same basis functions as the unper
turbed molecular orbitals, \p°r (for ABA). 

# = Ea°m4>m (14) 
m 

* , - £ ( < & + 0 * « (15) 
m 

In Appendix I it is shown that the MO coefficients for CBC 
a1m + a\m) c a n De expressed in terms of the corresponding 
coefficients for ABA and ABC in the small perturbation limit. 
If a\m represents the change in a°m for the perturbation A-B-A 
to A-B-C and if a'm represents the corresponding change for the 
perturbation A-B-A to C-B-A, then the changes in the coeffi
cients for the double perturbation, A-B-A to C-B-C, are given 
by 

dm = "Im + a'm (16) 

It should be emphasized that the additivity observed in the 
coefficients depends not only on the magnitude of the perturbation, 
but also on the unique constraints imposed upon the Fock matrix 
and upon Vne by the hemistructural relationship. The restriction 
imposed by the magnitude of the perturbation may be necessary 
for dvm = a\m + a'm, but it is not sufficient. 

c. Behavior of the Total Energy and the Energy Components. 
The change in coefficients, dvm (eq 1-5,16), can be used to express 

the new kinetic and potential (Kne, VK) energies: 
OCC 

T = 2 E E E ( < - + d,j) T,y(a°. + a'J (17) 
v i J 

VM = 2 E E E « - + du])(\l + 8\>i)(ai + «;,) (18) 
C I J 

vK = E E E « + a',j)(yi + m)(<& + «w) (19) 
V i J 

The kinetic energy matrix elements, T^, are not affected by the 
perturbation so that the change in kinetic energy depends only 
on the change in coefficients, drJ. The potential energies are a 
function of the corresponding matrix elements as well as the 
coefficients, dvj. The result is that the kinetic energy is governed 
by a fundamentally simpler relationship than Vm or VK. One 
consequence of this simpler relationship is that when changes in 
a'„, are additive (i.e., dvj = a[j + drJ), the kinetic energy may be 
additive (to first order in a'm) without Kne or Vx being additive. 
This disparity in behavior between T and Kne is particularly in
teresting since both are one-electron properties. 

The behavior of the kinetic energy is an important result since 
the total energy, including the nuclear repulsion energy (Knn), is 
related to the kinetic energy through the virial theorem19 

E =-T= (KM + Vn, + Vm)/2 = V/2 (20) 

Important situations where the virial theorem is applicable include 
atoms and ions in bound electronic states, molecules at equilibrium 
geometries, and Born-Oppenheimer transition states. In Appendix 
II, it is shown that the virial theorem, in the simple form of eq 
20, also applies to the hemistructural molecule under certain 
conditions. 

We have now derived a set of sufficient conditions for observing 
energy additivity. While these conditions are less restrictive and 
more general than constancy of electronic structure, they are not 
necessarily the final answer to the question of additivity. 

(i) Hemistructural Relationship. This relationship allows 
construction of the Fock matrix for the hemistructural molecule 
from information obtainable from the parent molecules. No new 
information is necessary to describe the properties of the hemi
structural molecule}1 

(ii) Perturbation Theory. For first-order corrections to the 
molecular orbitals the changes in coefficients, dym (eq I-10), are 
related to 5Vj4 by a set of simultaneous linear equations (eq 1-9). 
When the hemistructural relationship is applicable, 5V„;

e is given 
by the sum of independent contributions from each nucleus, so 
that the d„j are determined by independent contributions from each 
nucleus. 

(iii) Additivity of Kinetic Energy. Conditions i and ii are 
sufficient for the dvj to be expressed as dvj = a'yJ + a'fJ, and from 
eq 16 and 17 it can be seen that this leads to additivity for the 
linear terms (e.g., a^Tya',,) contributing to the kinetic energy.20 

A significant point is that kinetic energy additivity does not require 
any special assumptions concerning the maintenance of constant 
electron density over localized regions of space. Consequently, 
equivalent groups are not a necessary prerequisite for energy 
additivity. It is particularly significant that this applies even in 
the limiting case of first-order corrections to the MO coefficients. 

(iv) The Virial Theorem. If E = -T, additive kinetic energies 
are equivalent to additive total energies. When the virial theorem 
is not applicable (e.g., ions derived by vertical ionization), the 
kinetic energy may still be additive, but the total energy will no 
longer equal -T. 

III. Discussion 

A. Contrasting Behavior of the Total Energy and Energy 

(20) The bilinear terms (e.g., a'^Ta,,) contribute to nonadditivity in the 
kinetic energy. Note that Vm and V„ will have a nonadditive contribution 
even from the linear terms in a'„,, since the operators as well as the coefficients 
change with the perturbation (see eq 17-19). 
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Components. The kinetic energy has been shown to follow a 
fundamentally simpler relationship than the potential energy 
components, Vm, Vm, Vx. However, the virial theorem places a 
constraint on the total potential energy, V(V= Vnn+ V„s+ Vx), 
so that E = -T = V/2.21 Consequently, the "complications" 
present in the individual components cancel away in the sum (V), 
and E follows the same simple relationship as the kinetic energy 
(or V). It is important to realize that E can be additive or non-
additive, even though the deviations from additivity in Vm, Kne, 
and Vx can be one or more orders of magnitude higher than in 
the total energy. 

We can gain some appreciation of this by examining the nuclear 
repulsion energies appropriate for the benzene, toluene, and p-
xylene examples encountered earlier. The nuclear repulsion en
ergies between the 1,4 substituents in the three molecules are 67, 
538, and 4391 kcal, respectively. The mean value of Vm for 
benzene and p-xylene is 2229 kcal which deviates by 1691 kcal 
from the actual value for toluene! The heats of formation are 
additive to within 0.11 kcal, and if this value is substituted into 
eq 20 for E, we can note three important facts: (1) the kinetic 
energy must be additive to within 0.11 kcal; (2) the total potential 
energy (Vx + Vne + Vnn) must be additive to within 0.22 kcal; 
(3) the sum of Vx and Vne for toluene will be far from additive 
and will deviate from the mean by 1690.78 kcal and in the opposite 
direction from Vm. The significant point is that E, T, and V can 
be additive to within a kilocalorie, even though the individual 
components of V(Vx, V„e, Vm) may deviate from additivity by 
hundreds of kilocalories. 

B. Contrasting Behavior of the Total Energy and Orbital Energy. 
Since the virial theorem does not apply to the orbital energy, E0, 
and since Vx and Vm will generally be nonequal and nonadditive, 
the orbital energy will generally be less additive than the total 
energy. The total orbital energy is twice the sum of the individual 
orbital energies (for closed-shell systems) and is given by19 

E0 = T + V1x + 2Vx (21) 

For comparison, the total energy is given by 
E = T + Vne + Vx + Vnn (22) 

The difference between E and E0 is that Vm is replaced by an extra 
Vx term. We have seen from the previous example and eq 18 
and 19 that Vm and Vx can deviate substantially from additivity. 
The virial constraint forces the total potential energy to show the 
same additivity as the total energy (to within a factor of 2). If 
Knn is replaced by Vx, the deviations from additivity in the in
dividual potential energy components will not necessarily cancel 
away in Zs0. Consequently, it is possible for the total energy to 
be additive without the orbital energies or E0 showing a compa
rable degree of additivity. An example of this effect occurs in 
the case of benzene, pyridine, and pyrazine (Table II) where the 
total energy is additive to within 2.4 kcal, but the total orbital 
energy is only additive to 65 kcal. 

This fact has important consequences with regard to many of 
the past MO treatments of substituent effects. These approaches 
are based on the behavior of the orbital energy which will respond 
to multiple substitution in a different and fundamentally more 
complicated fashion than the total energy. As a result, treatments 
based on HOMO/LUMO interactions, PMO, or frontier orbital 
theory will require modification to meet this problem.22'23 

If a perturbation is small enough, it is possible for orbital 
energies or the potential energy components, Vm, Kne, and Vx, 

(21) (a) A number of authors have realized that the simple form of the 
virial theorem allows E to be related solely to -T (ref 2) or to (K„e + Va + 
Knn)/2 (ref 21b,c). An important contribution of the present paper is the 
derivation of the result which describes the effect of nuclear substitution on 
T. Allen and Shull effectively set up a model which assumes T is additive, 
(b) A. Liberies, A. Greenberg, and J. E. Eilers, J. Chem. Educ, 50, 676 
(1973). (c) E. Scarzafava and L. C. Allen, / . Am. Chem. Soc, 93, 311 
(1971). 

(22) Examples include: (a) Ian Fleming, "Frontier Orbitals and Organic 
Chemical Reactions", Wiley, New York, 1976; (b) B. Giese, Angew. Chem., 
Int. Ed. Engl., 16, 125 (1977). 

to be individually additive. Under such conditions, the total energy 
would also be additive. However, it is unlikely that this situation 
accounts for a significant number of cases where additivity is 
observed. It certainly does not apply to the benzene, pyridine, 
pyrazine example in Table II or even to the "trivial" case of 
benzene, toluene, orp-xylene. The large nonlinearity in Vm (1691 
kcal) ensures comparable nonlinearity in Vx and Kne. The present 
results show that the peculiar geometric arrangement implied by 
the hemistructural relationship will permit additive total energies 
even though orbital energies or Knn, Kne, and Vx are essentially 
nonadditive. 

C. Energy Additivity and Bond Length Additivity Do Not 
Depend on Group Transferability. Earlier accounts of additive 
substituent effects have emphasized the necessity of constant 
electronic structure for the substituents and the molecular fragment 
to which the substituents are attached.2'3 However, there is nothng 
inherent in eq 16 and 17 which would require constant electron 
density in a particular region of space or over a specific molecular 
orbital as a prerequisite for additivity. It is clear that constant 
electronic structure is a sufficient criterion for additivity, but the 
present results show that it is not necessary. 

This is interesting, but by itself gives little insight into the nature 
of possible deviations from the equivalent group concept. The 
analysis of forces in Appendix II indicates that the equivalent 
group is sacrificed, at least in part, to satisfy the constraints on 
the wave function imposed by the requirement of maintaining an 
equilibrium geometry when fragments are transferred from one 
molecule to another. Preserving an equilibrium geometry depends 
on whether or not changes in the force field due to new nuclear 
charges and positions can be exactly offset by redistribution of 
electron density. The analysis in Appendix II shows that such 
cancellation is possible at the hemistructural geometry, but there 
is no requirement that electronic reorganization must be limited 
to the spatial region associated with any particular fragment. Since 
at least part of this electronic reorganization is a response to offset 
the changes in the nuclear component of the force at each nucleus, 
it would not be a surprise to find that cancellation of the nuclear 
and electronic forces actually requires changes in electron density 
near each of the nuclei, particularly those nuclei closest to the 
site of perturbation. It is important to note that electron redis
tribution associated with first-order MO corrections does not 
perturb the additivity of the first-order kinetic energy terms (eq 
16 and 17), which through the virial theorem (eq 20) become 
equivalent to additive contributions to the total energy. Conse
quently, we have the remarkable paradox that a molecule can be 
divided into transferable fragments, on the basis of nuclear 
positions, and that these fragments apparently make transferable 
contributions to the total energy without the necessity of main
taining constant electronic structure. 

The idea of the equivalent group has been an important or
ganizing feature of structural chemistry ever since 1807 when 
Dalton proposed that molecules consist of atoms bound together 
in definite proportions.24 Today, the equivalent group appears 
in many empirical treatments of molecular structure1"3,25 and 
chemical reactivity.26 The present work demonstrates that ex
pressing the total energy in terms of group contributions does not 
require constant electronic structure for the component fragments 
of a molecule. Restructuring the equivalent group models into 

(23) Several authors have noted that the orbital energy and total energy 
do not always correlate with respect to changes in some molecular property. 
For examples dealing with Walsh's rules, see: (a) L. Z. Stenkamp and E. R. 
Davidson, Theor. Chim. Acta, 30, 283 (1973); (b) R. J. Buenker and S. D. 
Peyerimhoff, Chem. Rev., 74, 127 (1974). 

(24) J. R. Partington, "A Short History of Chemistry", 3rd ed., Harper 
& Row, New York, 1960, p 173. 

(25) Examples include CPK molecular models: (a) J. M. Timko, S. S. 
Moore, D. M. Walba, P. C. Hiberty, and D. J. Cram, J. Am. Chem. Soc, 99, 
4207 (1977); empirical force-field calculations: (b) R. H. Boyd, S. N. Sanwal, 
S. Shary-Tehrany, and D. McNaIIy, J. Phys. Chem., 75, 1264 (1971); (c) 
J. L. Fry, E. M. Engler, and P. v. R. Schleyer, / . Am. Chem. Soc, 94, 4628 
(1972); (d) N. L. Allinger, M. T. Tribble, and M. A. Miller, Tetrahedron, 
28, 1173 (1972). Various empirical models of molecular geometry have also 
been reviewed: (e) L. S. Bartell, / . Chem. Educ, 45, 755 (1968). 
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conformance with this picture and, in particular, obtaining pa
rameters which reproduce correct energies as well as other 
properties (e.g., dipole moments, vibrational frequencies, NMR 
chemical shifts, polarizabilities) should prove to be an interesting 
challenge. 

D. Principle of Transferability and Group Contributions to 
Molecular Properties. The concept of transferability27 is central 
to the development of the hemistructural relationship and has been 
used in several contexts in developing previous approaches for 
treating multiple substituent effects.26 Methods such as atoms 
in molecules,28 diatomics in molecules,29 molecules in molecules,30 

fragment molecular orbital theories,31 and simulated ab initio MO 
theory32 (SAMO) use an assumed transferability at the matrix 
element level as a convenient approximation. Marcus' development 
of conformal sets33 comes remarkably close to the hemistructural 
relationship in a number of aspects, but the definition of conformal 
sets is closely intertwined with the formalism of Huckel ir-MO 
theory34 and the assumed transferability of Huckel matrix ele
ments. Localized orbital2'35 approaches carry the assumed 
transferability to the level of specific regions of electron density 
and their associated energy. Finally, group additivity schemes'8 

assume that molecular properties can be expressed as a sum of 
transferable contributions from individual fragments. The present 
contribution does not assume transferability, but demonstrates 
it as a consequence of a simple geometric relationship. The 
transferability of integrals used in the Fock matrix is not readily 
apparent when the integrals are expressed in terms of conventional 
nuclear-centered and nuclear-dependent basis functions. In fact, 
the transferability is not even applicable in such a basis set, but 
the fundamental simplicity of the hemistructural relationship is 
unmasked by the choice of nuclear independent basis functions 
(eq 6-8): at the Hartree-Fock and nonrelativistic limits, the 
energy and molecular orbitals are independent of basis set and 
must behave as if the hemistructural integrals transfer from the 
parent structures. 

Transferable fragments and localized orbitals2,35 are two ways 
of accounting for the fact that molecular properties can often be 
expressed in terms of group contributions plus interactions between 
groups. The present development shows that neither condition 
is necessary. The fact that bond energies in equivalent bonding 
situations may appear additive without the maintenance of con
stant electronic structure in the bonding regions (or elsewhere) 
is an interesting paradox and will be explored in more detail.36 

(26) (a) J. N. Bronsted and K. J. Pedersen, Z. Phys. Chem. (Leipzig), 108, 
185 (1924); (b) R. P. Bell, "Acid-Base Catalysis", Oxford University Press, 
London, 1941; (c) M. G. Evans and M. Polanyi, Trans. Faraday Soc, 32, 
1340 (1936); (d) L. P. Hammett, "Physical Organic Chemistry", McGraw-
Hill, New York, 1940; (e) G. S. Hammond, J. Am. Chem. Soc, 77, 334 
(1955); (f) J. E. Leffler and E. Grunwald, "Rates and Equilibria of Organic 
Reactions", Wiley, New York, 1963; (g) M. J. S. Dewar and P. J. Grisdale, 
J. Am. Chem. Soc, 84, 3548 (1962); (h) E. R. Thornton, ibid., 89, 2915 
(1967); (i) D. A. Forsyth, ibid., 95, 3594 (1973); Q) C. D. Johnson, Chem. 
Rev., 75, 755 (1975). 

(27) B. O'Leary, B. J. Duke, and J. E. Eilers, Adv. Quantum Chem., 9, 
1 (1975). 

(28) W. Moffitt, Proc. R. Soc London, Ser. A, 210, 245 (1951). 
(29) (a) F. O. Ellison, J. Am. Chem. Soc, 85, 3540 (1963); (b) J. C. 

Tully, J. Chem. Phys., 64, 3182 (1976). 
(30) W. von Niessen, J. Chem. Phys., 55, 1948 (1971). 
(31) For example: (a) M. K. Orloff and D. D. Fitts, J. Am. Chem. Soc, 

85, 3721 (1963); (b) M. D. Newton, F. P. Boer, and W. N. Lipscomb, ibid., 
88, 2353 (1966); (c) L. J. Weimann and R. E. Christoffersen, ibid., 95, 2074 
(1973); (d) M. H. Whangbo, H. B. Schlegel, and S. Wolfe, ibid., 99, 1296 
(1977); (e) W. H. Fink, J. Chem. Phys., 66, 1968 (1977); (f) M. Klessinger, 
Theor. Chim. Acta, 49, 77 (1978). 

(32) J. E. Eilers and D. R. Whitman, J. Am. Chem. Soc, 95, 2067 (1973). 
(33) R. A. Marcus, J. Chem. Phys., 43, 2643 (1965). 
(34) E. Huckel, Z. Phys., 70, 204 (1931). 
(35) For example: (a) S. Rothenberg, J. Am. Chem. Soc, 93, 68 (1971); 

(b) D. A. Kleier, T. A. Halgren, J. H. Hall, Jr., and W. N. Lipscomb, / . 
Chem. Phys., 61, 3905 (1974); (c) W. England, M. S. Gordon, and K. 
Ruedenberg, Theor. Chim. Acta, 37, 177 (1975). (d) Somewhat related to 
the localized orbital is the transferable atomic potential; see: G. Nicolas and 
Ph. Durand, J. Chem. Phys., 70, 2020 (1979). 

(36) J. R. Murdoch and D. E. Magnoli, / . Am. Chem. Soc, in press. 

E. Molecular Forces and Bond Length Additivity. In Appendix 
II, it is shown that coefficient additivity (e.g., eq 16) leads to the 
prediction that the hemistructural geometry (e.g., A-C) will be 
a zero force structure (i.e., energy minimum or maximum) if the 
parent structures (A-A and C-C) are zero force structures.15'37'38 

In the case where one group is common to both parents (e.g., the 
"B" fragment in ABA and CBC), coefficient additivity is not 
sufficient to guarantee that the hemistructural ABC will be a zero 
force structure. In particular, the geometry of the B fragment 
should be more susceptible to residual forces than the A and C 
fragments and the relevance of this finding to various problems 
(e.g., transition-state structure, hydrogen-bond potentials) is 
currently under investigation. 

F. Relationship between Energy Additivity and Bond Length 
Additivity. Bond length additivity for the molecules A-A, A-C, 
and C-C holds for the first-order force terms as well as for the 
second-order force terms outlined in eq II-6 of Appendix II, 
whereas bond energy additivity holds only for the first-order kinetic 
energy terms (see eq 16 and 17). Consequently, bond length 
additivity and the concept of "covalent radii" do not necessarily 
require bond energy additivity. It is interesting to note that some 
time ago Pauling made an equivalent generalization based upon 
his empirical examination of bond lengths and bond energies.la 

G. Future Developments. 1. Solutions, Solid-State Materials, 
Surfaces, and Energy Transfer. The theoretical approach presented 
here has the advantage of leading to both pictorial and quantitative 
descriptions for properties of molecules which do not have to be 
defined in definite structural terms. Consequently, it should be 
particularly applicable to problems concerned with interactions 
on surfaces, in the solid state, in solvation phenomena, and in 
energy transfer. 

(37) Bond length additivity can be described in terms of a specific radius 
assigned to each fragment1 or in terms of total bond length conservation for 
the process, A-A + C-C — A-C + A-C. A sufficient requirement for 
assigning a radius to each fragment is that electronic reorganization on 
fragment transfer is limited to first-order corrections (Appendix II). If this 
condition applies to an entire set of molecules generated from pairwise com
bination of n fragments (e.g., A-A, A-B, A-C, A-D B-B, B-C, B-D, 
. . ., C-C, C-D, . .., D-D, . . .), then a unique radius can be assigned to each 
fragment, all bond lengths will be the sum of the corresponding fragment radii, 
and reactions such as A-B + C-D - • A-C + B-D will be accompanied by 
conservation of total bond length. Note that if the first-order condition applies 
to molecules within separate subsets and fails to apply to molecules in different 
subsets, then a given fragment may have a different radius in each subset. 
This point will be pursued in future papers. 

(38) A referee has raised an instructive point with regard to applying this 
result to a case where one parent (e.g., R-R) has no zero force geometry 
except at the dissociated limit. The other two structures (S-R and S-S) have 
their respective energy minimum at a finite value for the internuclear distance 
(e.g., r„ and r„ = r, + r„ respectively). It is convenient to pick an origin at 
the midpoint of the two symmetrical structures, so that the zero force geometry 
for R-R occurs with the left R at -<= and the right R at +». The coordinates 
for the zero force structure of S-S correspond to -r, for the left S fragment 
and to +r, for the right fragment. The analysis given in Appendix II predicts 
a zero force structure for R-S at the hemistructural geometry with respect 
to the zero force structures of the two parents, R-R and S-S. This prediction 
would place the S in S-R at -r, and the R in S-R at +<*>, which corresponds 
to dissociated S-R and to a zero force structure. The prediction is correct, 
but incomplete since the nonhemistructural zero force geometry for S-R, 
corresponding to an internuclear distance of r„, is missed. 

The analysis presented in Appendix II shows that when fragment transfer 
between various structures can be described in terms of first-order MO cor
rections (i.e., coefficient additivity, eq 16), the bond distances separating the 
fragments at a zero force geometry can be described in terms of a sum of 
covalent radii. One obvious possibility with regard to nonhemistructural 
energy minima is the significance of second or higher order corrections to the 
MO coefficients, and there are a few examples reported by Pauling where bond 
length additivity breaks down for the experimental bond lengths.1 Pauling 
cites bond length data for compounds involving elements in the first four rows 
of groups 4 through 7, and there are four substantial breakdowns of bond 
length additivity: these involve using the bond lengths of H-H, F-F, HO-OH, 
and H2N-NH2 to derive single-bond covalent radii for hydrogen, fluorine, 
oxygen, and nitrogen.1 The deviations are particularly intriguing, since sat
isfactory covalent radii can be derived for H, F, O, and N from other com
pounds (e.g., CH3-H, CH3-F, CH3-OH, CH3-NH2) containing these four 
elements. This suggests something unusual about H-H, F-F, HO-OH, and 
H2N-NH2 compared to CH3-H, CH3-F, CH3-OH, CH3-NH2, and similar 
molecules. These deviations and the relationship between higher order MO 
corrections and the existence of nonhemistructural zero force geometries are 
currently undergoing examination. 
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2. Geometry Nonadditivity and HOMO/LUMO Separations. 
The extension of the theory to examples where deviations from 
geometry and coefficient additivity occur appears to be 
straightforward. One factor, related to the energy separation of 
occupied and vacant orbitals,39 is the contribution of higher order 
perturbation terms.9 This will affect the behavior of the MO 
coefficients with respect to 8\m (eq 1-9) as well as the relationship 
between the two-electron repulsion terms in eq 1-6. The virial 
theorem (eq 20 and II-1) and the Hellmann-Feynman theorem 
(eq II-2) also place important constraints on the dependence of 
the MO coefficients as a function of 6Vne (eq 17-19) and its 
derivatives (eq II-7-9,11-19-22). Treating deviations from ge
ometry additivity would have important applications in the pre
diction of transition-state structure, structures of analogous stable 
intermediates, geometries of metal complexes, and geometry 
changes due to acquisition or loss of an electron. Prediction of 
force constants and isotope effects are other potential areas of 
investigation. 

IV. Summary and Conclusions 
Some examples of bond energy additivity appear to be explicable 

in terms of equivalent groups, but there are a number of cases 
where bond energy additivity persists even after the equivalent 
group concept has broken down (e.g., benzene, pyridine, and 
pyrazine). The failure of existing concepts to account for this 
relatively simple phenomenon prompted the present approach for 
treating nuclear substitution. 

The finding that all integrals for hemistructural ABC can be 
obtained from ABA and CBC places a fundamental constraint 
on the relationship between the properties of the three structures. 
In the present paper, some of the consequences of this integral 
transferability are examined within the limiting case of first-order 
corrections to Hartree-Fock wave functions. 

An important result is that the kinetic energy responds to 
perturbations in a simpler fashion than the potential energy 
components (Knn, Vne, Vx), and one ultimate consequence is that 
changes in the total energy tend to be much more additive than 
the corresponding changes in the orbital energy. This fact is 
expected to have considerable impact on future applications of 
perturbational treatments of structure and reactivity (e.g., frontier 
MO theory) which are formulated in terms of orbital energy 
instead of total energy. 

A significant point is that even though the response of the 
individual potential energy components to perturbations is more 
complex than the corresponding response of the kinetic energy, 
the virial theorem requires that the total potential energy (V = 
Vm + vm + v<x) and t n e total energy behave in the same fashion 
as the kinetic energy. Consequently, the behavior of the kinetic 
energy is of prime importance in analyzing the effects of nuclear 
substitution. 

Bond length additivity has been demonstrated as a limiting case 
when fragment transfer (A-A + C-C — 2A-C) is described by 
first-order corrections to the MO coefficients. Within this 
first-order framework, energy changes due to fragment transfer 
may be additive or nonadditive, and consequently bond length 
additivity does not necessarily require bond energy additivity. The 

(39) (a) Substituting eq 1-2 into eq 1-6, it can be shown (see ref 9) that 
SVg is approximated by 6K_ « 4ZVY^K E E t A a 0 W e(/w + 
2 £ r c £ L r K M , , E L w f l M r 9 y * / . 0>) Equation 1-7 gives a good descrip
tion of the changes to the MO coefficients when the bril terms are small (i.e., 
6„M < 1.0). In such a case, one could anticipate that the second term of eq 
1-6, which contains the product, b,„b„, may be smaller than the first term, 
which contains only one i,„ coefficient. It is recognized that the size of i„„ 
may not be the only factor involved in regulating the relative magnitude of 
the first and second terms of eq 1-6, but for one specific example of a per
turbation (a series of mononuclear atoms and ions where the nuclear charge 
represents the perturbation) it can be shown analytically that the second term 
of eq 1-6 vanishes (within the first-order framework), even though individual 
terms in the summations are nonzero. This has been verified by higher order 
numerical calculations (D. E. Magnoli, Thesis, UCLA, 1980), which also show 
that the first term of eq 1-6 dominates the second term until some of the bm 
approach and exceed one. The generality of this result and the effect of 
including higher order corrections to the MO coefficients are under exami
nation. 

fact that bond length additivity may fail for A-B and B-C dis
tances in A-B-A, A-B-C, and C-B-C before it fails for the A-C 
distance is an important result which will be developed in future 
work. 

It is also shown that the additivity of the kinetic energy20 is 
equivalent to additivity of the total energy, but this additivity does 
not require constant electronic structure in any particular region 
of space. Even in the limit of a small perturbation, equivalent 
groups are not a prerequisite for additivity relationships. 

This first-order treatment of nuclear substitution has altered 
long-held views on the relationship between molecular structure 
and empirical dissections of molecular properties into group 
contributions. The present work has also provided a firm theo
retical foundation for several concepts which have been established 
empirically for years. Nonetheless, it would be unrealistic38 to 
expect that all aspects of chemical bonding can be described as 
first-order effects. The extension of the present work to higher 
order corrections and the elucidation of more general effects on 
molecular properties, structure and dynamics is now underway. 

Appendix I 
The Hemistructural Wave Function: First-Order Corrections. 

From eq 12, it can be seen that the perturbed density matrix 
element Pw is given by40 

occ 

Pt; - 2E(«fc + a'rtHaX, + a'*) (H) 

C 

OCC OCC OCC 

Pw = Pg, + 2£«>° , + 2LaVw + 2Ea>w 
V V V 

Substituting eq (M) into eq 13, 
occ occ 

5V& = 4 E E L a;, a°, Qm + 2 E L E « > ; A y w (1-2) 
k l v k I v 

where QiJk, = (ijkl) -l/2{ikjl). The new molecular orbitals, \p„ 
depend on the change in the Fock matrix which is given by 

5F = S\a + <5VM (1-3) 

where 6Vn(J is the change in Vne due to the perturbation. i/<„ can 
be expanded in terms of 4% so that 

4>, = tf + EMS (M) 
M 

From eq 1-4 and eq 15, 

a'vm = E ^ A (*-5) 

and substituting eq 1-5 into eq 1-2, 5V£, becomes 
OCC OCC 

SVg = 4EE*>„wLLa>?A,*; + 2EEE^A f LLa>° .e , ; / „ 
i H k I I p. { k I 

(1-6) 

For the special case of a small perturbation, perturbation theory9 

(second order in energy; first order in wave function) can be used 
to relate \p„ (eq 1-4) to SF. The coefficients (eq 1-4), b^, are given 
by41 

KB = E°a-E% £ 2 - 4 ( I"7) 

For small perturbations, only the first term of eq 1-6 makes a 
significant contribution to 6V£39b and on substitution into eq 1-7 

(40) When the relative order of perturbed and unperturbed orbitals is 
unchanged, application of eq 1-1 is straightforward. In other cases, proper 
numbering of the orbitals will ensure a correspondence between a",k and a°,k 
+ a„k. All perturbations relevant to the present paper can be treated within 
an isoelectronic and isonuclear framework (see ref 44 and 45). 
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gives42 

1 OCC 

bafi = - ^ - ^ [ZZa0S, {4EZbm ZZa°ka°,8ljkl + 5\&}a%] 
£,a ~ Up t J v Ii k I 

(1-8) 

which on rearrangement is equivalent to 
baf} ~ 

1 OCC 

- 3 — - [4ZEA,, ZZZZa%a%*lka*pijkl + ZZa$fl%d\'l] 
t a - tig v ft i J k I i j 

(1-9) 

The unknowns in eq (1-9) are bvli on the right-hand side and 
ba$ on the left-hand side. The energies E°a and Ef as well as the 
coefficients a°ap a%, a%, and a°, and the integrals 6,-,*, are fixed 
and do not vary with the perturbation. The only variables are 
the nuclear-electron attraction matrix elements, <5V{fe- Equation 
1-9 permits a self-consistent solution for bm within the perturbation 
framework imposed by eq 1-7. The self-consistent aspect of eq 
1-9 permits the recovery of a portion of the higher order terms 
omitted by the more common expression, eq 1-7. A full treatment 
will be presented elsewhere.41 Alternative forms of self-consistent 
perturbation theory have been presented.43 

Equation 1-9 can be applied to three hemistructural molecules 
(e.g., structures 3-5) by treating A-B-A as the unperturbed 
reference. The two perturbations are represented by the change 
in structure from A-B-A to A-B-C (C-B-A) and from A-B-A 
to C-B-C. Since C and A are generally not isonuclear or iso-
electronic, the associated energy changes could easily amount to 
thousands of kilocalories or more, and the applicability of per
turbation theory is not immediately obvious. This apparent 
problem can be overcome by adding extra molecules or fragments 
to each structure in order to achieve an isonuclear and isoelectronic 
condition. As an example, the unperturbed reference becomes 
(A-B-A + 2C), the first perturbed structure becomes (A-B-C 
+ C + A), and the second perturbed structure is represented by 
(C-B-C + 2A). The energy differences are now reduced to the 
range of zero to tens of kilocalories and represent a small fraction 
of the total molecular energies.44 Total energy differences, as 
well as relative energy differences, are substantially reduced, and 
the addition of extra structures results in no loss of chemical 
significance.45 These extra structures will not be written out again 
and will be implicitly assumed hereafter. In a subsequent paper, 
an example is presented in which a 495 OOO-kcal difference between 
ABA and CBC (which represents 75% of the total energy for 
CBC) is reduced to 44 kcal by maintaining the perturbation within 
an isoelectronic and isonuclear framework. The 44 kcal represents 
less than ~0.006% of the total energy of ABA + 2C or CBC + 
2A. The absolute and relative energy reductions reflect the fact 
that changes in individual orbital energies, Mulliken populations, 
electron densities, and density matrix elements are relatively small 
in going from A-B-A + 2C to A-B-C + C + A to C-B-C + 
2A for at least one actual example. A more quantitative analysis 
concerning the applicability of this form of perturbation theory 
is in progress.36 

The change in Vne on going from A-B-A to C-B-C is given 
by the sum of the separate changes in Vnc on perturbing A-B-A 
to A-B-C and to C-B-A. The fact that eq 1-9 represents a set 
of simultaneous linear equations and that changes in V„e are 
additive and assignable to changes in individual nuclei is significant 
since changes in the coefficients (i.e., 6M„) must also be additive 
and assignable to changes in individual nuclei.46 From eq 1-5 
it can be seen that if the changes in b^ are additive, then changes 
in dym will also be additive. If dm is associated with the pertur
bation ABA to CBC, then d„m can be divided into two parts. One 
term (a[m) is associated with changing nuclear positions and 
charges in the right-hand fragment and corresponds to the per
turbation ABA to ABC. 

The second term (a'm) describes the change in coefficients for 
the perturbation ABA to CBA. The change in coefficient, a„m, 
is given by 

d,m = alm + al
m (I-10) 

The total change in MO coefficients, dvm, for the perturbation 
ABA to CBC is equal to the sum of the changes in MO coefficients 
for the perturbation ABA to ABC and ABA to CBA. 

Appendix II 

Forces in the Hemistructural Molecule. In the Born-Oppen-
heimer approximation, the nuclear motions of a molecule can be 
viewed as occurring in a potential field provided by the electrons 
and nuclei. Consequently, the forces acting on a particular nucleus 

(41) Although a full discussion of this application of perturbation theory 
will appear elsewhere, the highlights of some important points are covered 
below. 

I. Materialization of Atoms into Empty Space. Since the basis set is 
nonnuclear centered and independent of nuclear charges and positions, it is 
worthwhile to address the question of whether or not the first-order treatment 
(i.e., eq 1-7) is applicable to a problem where a nucleus moves from one point 
in space to a region which originally did not contain any nuclei. At first 
glance, it may seem that when an atom materializes at a point which had low 
electron density in the unperturbed system, all of the Fock matrix elements 
involving basis functions in the nearby volume will change dramatically, and, 
as a result, first-order treatments may break down. However, the situation 
is not so simple. It is instructive to consider a complete basis set consisting 
of spherical Gaussians with a continuous range of exponents located in each 
volume element of space (see ref 16). The unperturbed case can be taken to 
be an arbitrary molecule located at the origin in a defined, but arbitrary, 
orientation. In principle, a Fock matrix can be constructed and used to 
generate a set of orbital energies and molecular orbitals. The perturbation 
is a translation which moves the molecule an arbitrary distance from the origin 
(e.g., 50 A). A new Fock matrix can be constructed and used to produce a 
perturbed set of molecular orbitals and orbital energies. Since the molecule 
has only been translated, it is clear that the orbital energies are unchanged. 
However, the MO's have undergone a subtle modification: for example, 
suppose a particular core orbital (e.g., MO 1) of the unperturbed molecule 
is largely represented by some combination of basis functions, including 0,. 
When the molecule is moved away by 50 A, it is clear that <t>\ will no longer 
make a significant contribution to MO 1, which will now be represented by 
some new combination of basis functions, which made negligible contributions 
to the MO's of the unperturbed molecule. This may appear to be a case of 
a large change in coefficients, but if we look further, it will be seen that it is 
not the numerical values of the coefficients which have changed, but only the 
basis functions assigned to the coefficients. If the numerical values of the 
unperturbed coefficients are compared to the numerical values of the perturbed 
coefficients, a one-to-one correspondence will be found between the two sets 
of coefficients. The basis functions associated with each value of coefficient 
will differ. Similarly, the Fock matrix for the perturbed problem will contain 
numbers identical with those of the original Fock matrix but in different 
positions. In fact, the perturbed Fock matrix differs from the unperturbed 
Fock matrix by interchanges of appropriate rows and columns. The row and 
column interchanges have no effect on the values of the orbital energies or 
on the set of numerical values appearing as coefficients for each eigenvector. 
The coefficients will be associated with different basis functions, but will have 
identical values. When the appropriate row and column interchanges are 
carried out, the perturbed Fock matrix corresponds, element by element, to 
the unperturbed Fock matrix, and application of eq 1-7 is straightforward and 
trivial. 

Let us consider a second case where the unperturbed molecule is moved 
into a region close to a positive charge. When the row and column inter
changes are performed on the perturbed Fock matrix and the elements are 
compared with the corresponding elements of the original Fock matrix, it will 
be seen that the values are no longer equal. If the effect of the positive charge 
on the electronic structure of the molecule is small, then application of eq 1-7 
is again straightforward. The point of these two examples is that simple 
translation of a molecule to a new region of space has no effect on the 
applicability of eq 1-7, as long as the appropriate row and column interchanges 
are carried out and the translation does not result in a large electronic re
organization. The important point is not that a large change in coefficient 
of a particular basis function takes place on translation, but the extent to which 
the electronic structure of the fragment is perturbed by the translation. 

The row and column interchanges are equivalent to "moving" the unper
turbed MO's to the new position of the fragment or the molecule. The 
interchanges avoid the difficulty of trying to represent the new MO's in terms 
of orbitals centered some distance away. Note that after the appropriate row 
and column interchanges (or after any linear transformation of the matrix 
elements) are completed, the Vn, matrix elements of the transformed Fock 
matrix will still be a sum of contributions from individual nuclei, the V„ matrix 
elements will be given by an equation of the form of eq 1-2, and the kinetic 
energy matrix elements will still be transferable. Consequently, the application 
of linear transformations to the unperturbed and perturbed Fock matrices 
before application of first order perturbation theory will not alter the form 
of eq I-10 or the basic conclusions concerning "coefficient" additivity. 

For our present purposes, these row and column interchanges need not be 
specified, but if the reader wishes to apply eq 1-7 to actual numerical examples, 
the appropriate interchanges are necessary before attempting to calculate the 
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can be expressed as gradients or the potential field which is 
generated by the electrons and the other nuclei. Nuclear forces 
are of interest since the simple form ol the virial theorem (E = 
-T = V/2, eq 20 ) can be applied when forces on the nuclei are 
zero. This allows us to express the total molecular energy, in
cluding nuclear repulsion, in terms of the electronic kinetic energy 
given by eq 17. When the forces acting on the nuclei are not zero, 
the virial theorem assumes a slightly different form19 

E =-T-
dE 3JV 

(IM) 

where ./V is the number of nuclei and the X„ represent the nuclear 
coordinates. Equation II-1 permits us to express the total energy, 
E, in terms of the kinetic energy and the forces acting on the nuclei 
(e.g., 8EJdXn). Equation II-1 is a useful expression since the 
geometry aspects of the hemistructural relationship apply at both 
equilibrium and nonequilibrium geometries. Each point on the 
potential surface for A-B-C will be hemistructural with respect 
to corresponding points on the potential surfaces for A-B-A and 
C-B-C. Since the geometry imposed by the hemistructural re
lationship results in certain constraints on the wave function (and 

perturbed Fock matrix. Furthermore, while this analysis applies to a basis 
set consisting of Gaussian s orbitals distributed in space, it may not apply to 
every complete nuclear independent basis set, but this has no bearing on the 
results of the present paper. One example of a numerical calculation based 
on eq 1-6 and 1-7 has been carried out (D. E. Magnoli, Thesis, UCLA, 1980) 
and will appear in due course. 

II. Isoelectronic/Isonuclear Perturbations. If eq 1-7 is applied to a per
turbation which changes the number of nuclei or electrons, a number of 
awkward difficulties arise. An example is the series of perturbations A-A, 
A-C, C-C, where the A and C fragments are not isoelectronic or isonuclear. 
This problem can be avoided in a number of ways, but one of the simplest is 
to consider the energy change for the "exchange reaction", A-A + C-C -» 
2A-C. AE for this reaction is equivalent to twice the deviation of the A-C 
energy from the mean of the A-A and C-C energies. Note that A-A plus 
C-C are isoelectronic and isonuclear with respect to 2A-C. See footnotes 44 
and 45 for further discussion. 

III. Criteria for Applying First-Order Perturbation Theory. This is dis
cussed in the second paragraph after eq 1-9 and again in ref 36, where nu
merical calculations have been carried out. 

IV. Consistency of Perturbational Order. Equation 1-7 is a standard 
formula (ref 9) for calculating first-order corrections to the molecular orbitals, 
while eq 17-19 are exact expressions if dvfk is taken to be the difference in 
coefficient between the perturbed structure and the unperturbed structure. In 
the present application, eq 17-19 are approximate only because dvll is esti
mated from the first-order equation (1-7). In most applications of perturbation 
theory, the nth order estimates, a'm are substituted into a truncated power 
series expansion to give the (n + l)th energy, whereas in the present case the 
nth order corrections (n = 1) are substituted directly into the exact expressions 
(i.e., eq 17-19). The latter procedure results in the retention of all (n + l)th 
order energy contributions and in a portion of the contributions out to the 
(2n)th order. Thus, the present method apparently incorporates more in
formation into the energy for a given order correction to the MO coefficients, 
but since some of the higher order contributions (i.e., those >n + 1) are 
omitted and some are retained, the method is inconsistent with respect to the 
order of the calculated energy (i.e., the order with respect to energy is 
somewhere between (n + l)th and (2n)th order). In the present case where 
n = 1, the two methods are equivalent in the sense that all terms of the same 
order are retained, provided that the same perturbation is used in both cases. 
However, the calculated numerical values may be different, and these points 
are being pursued. 

One additional point should also be brought out concerning the order of 
the perturbation. The omitted term in eq 1-6 will formally lead to a second-
order energy and force contribution which is not explicitly accounted for in 
the present paper. For at least one specific perturbation, it can be shown 
analytically that the second term in eq 1-6 is rigorously zero within the 
first-order framework (D. E. Magnoli, Thesis, UCLA, 1980). The generality 
of this result and the consequences of omitting the second term of eq 1-6 are 
undergoing examination. In the meantime the reader is reminded that when 
the term "second order" is applied to energy or nuclear forces, none of the 
second-order contributions associated with the second term of eq 1-6 are 
included. However, it should be emphasized that the major conclusions of 
the current paper (see section IV) will not be altered, even if the energy and 
force contributions associated with the second term of eq 1-6 prove to be 
significant. Another reason for the use of eq 17-19 in conjunction with eq 
1-7 is because the usual perturbational equations (e.g., 1 and 2) are poorly 
adapted for calculating the kinetic energy, since the kinetic energy portion of 
the Fock matrix in the current basis set is invariant to the perturbation. 
Furthermore, the total energy calculated from eq 2 cannot be broken down 
into energy components because of the presence of cross terms, which arise 
from the squared term of eq 2. 

electron densities), it would also be expected to produce certain 
constraints on nuclear forces. 

If these constraints act to produce zero net force on each nuc
leus, the hemistructural geometry will satisfy the simple form of 
the virial theorem (E = -T) and may correspond to an equilibrium 
geometry.47 While there are many experimental examples of this 
situation,1 it is also known1 that net nuclear forces may exist at 
the hemistructural geometry, so that the equilibrium geometry 
of A-B-C is distorted away from the hemistructural geometry 
defined by the equilibrium structures of A-B-A and C-B-C. 
Consequently, forces on the nuclei at the hemistructural geometry 
assume fundamental importance, since they can be related to the 
total molecular energy through the generalized virial theorem (eq 
II-1) and to geometry deviations from the hemistructural rela
tionship imposed by the equilibrium geometries of A-B-A and 
C-B-C. 

The force on a nucleus in the direction of nuclear coordinate 
Xm is given by the generalized Hellmann-Feynman theorem48 as 

dE 
AX, 

7- l T l dH I T \ 
— = I ^f hjr » 

'm \ I^J / 
(II-2) 

where * is the total wave function (nuclear and electronic) and 
H is the Hamiltonian operator. In the Hartree-Fock formalism 
this becomes19 

dE 
dXm dXm dXm 

dE 
dXm 

„ r » z b dRkb 1 «c/ d\nc \ 

(H-3) 

(II-4) 

where Rti) is the internuclear distance between nucleus a and 
nucleus b, and Z1, Zb are the respective nuclear charges. 

Equation II-4 can be applied to three hemistructural molecules 
(A-A, C-A, C-C) in the following manner. For the special case 
where A-A and C-C are equilibrium structures (or Born-Op-
penheimer transition states), no net forces exist on any of the 
nuclei. Using the hemistructural relationship, we can then inquire 
as to what forces exist on the nuclei in the A,C fragments of the 
hemistructural molecule C-A. The results are different in the 
examples of ABA, CBA, and CBC, so the simpler case will be 
examined first. 

The combined electronic and nuclear component of force on 
a specific nucleus in the left-hand "A" fragment in A-A is given 
by 

ZM(N-KI + 7VAr) + 2Ea°V£a» = 0 
M 

(II-5) 

where ZA! is the nuclear charge of the specific nucleus and /VA/ 
equals minus the term in brackets in eq II-4 where the summation 
extends over all nuclei in the left-hand "A" fragment except the 
specific nucleus associated with ZAi. The summation for JVAr 
extends over all nuclei in the right-hand "A" fragment. Vj)1,' equals 
the derivative matrix, d \m/dXm, while a£ represents the vector 
of coefficients, a°„ for \p°ll. Note that the hemistructural constraint 
allows V*' for A-C to be taken directly from A-A. In general, 
eq II-5 will be repeated for each nuclear coordinate in the left 
and right fragments of A-A. 

The force expression for a specific nucleus in the left-hand "C" 
fragment of C-C is given by 

OCC 

2 £ [ a ° V £ a ° + 2»iVS«o + 2a£Vga° + aiVgaJ, + 2n',\^ + 

• ; v £ f 8 y + Za(Na + NAr + SNCT) = 0 (II-6) 

where a^ (aj,) represents the changes in coefficients due to re
placement of the left- (right-) hand nuclei in A - A with the left-
(right-) hand nuclei in C - C . 5NCr is defined by NCr - NAT. 

The form of this equation is particularly instructive since both 
the nuclear and electronic contributions divide cleanly into two 
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types: those that are functions of left-hand nuclei only (i.e., 
functions of Z and position) and those that are functions of both 
left- and right-hand nuclei. The general form of this equation 
can be expressed as 

F0(I) + F1(Lr) = 0 (II-7) 

where F0(Z) equals 
OCC 

F0(D = 2I)[«2V£M + 2*WX + »iVS<] + ZcKiVc/ + AfAr) 

(II-8) 

and where F1(Ij) equals 
OCC 

F1(I1T) = 2£[2aiV2»» + 2aiV£fc + tJVSay + Za(5NCt) 

(II-9) 

A necessary condition for satisfying eq II-7 is that F0(O = -F1(Ar). 
Consequently, the value of F1 (/,r) at an equilibrium geometry 
depends only on the structure of the left-hand fragment and is 
entirely independent of the nuclear charges and coordinates of 
the right-hand fragment. For a broad class of structures, it can 
be shown that F0(Z) and F1(Ij) vanish separately49 at each zero 
force geometry, so that eq II-7 becomes 

F0(O = F,(Z,r) = 0 (11-10) 

The force on a nucleus in the "C" fragment of C-A is given 
by F0(I) if the hemistructural condition holds. Consequently, all 
the forces on the " C nuclei will vanish in C-A, and it is possible 
to demonstrate a similar result for the "A" nuclei in C-A by 

(42) Note that ba§ = -b^ and baa = 0 (ref 9). 
(43) (a) J. A. Pople, Proc. R. Society-(London), Ser. A, 233, 233 (1955); 

(b) J. N. Murrell and G. Shaw, J. Chem. Phys., 46, 1768 (1967); (c) A. 
Devaquet, MoI. Phys., 18, 233 (1970); (d) A. Devaquet and L. Salem, / . Am. 
Chem. Soc., 91, 3793 (1969); (e) S. Huzinaga and A. A. Cantu, / . Chem. 
Phys., 55, 5543 (1971); (f) R. Sustmann and G. Binsch, MoI. Phys., 20, 1, 
9 (1971); (g) H. Fujimoto, S. Kata, S. Yamabe, and K. Fukui, J. Chem. 
Phys., 60, 572 (1974); (h) H. Fujimoto and R. Hoffmann, / . Phys. Chem., 
78, 1167 (1974); (i) M. V. Basilevsky and M. M. Berenfeld, Int. J. Quantum 
Chem., 8, 467 (1974). 

(44) Small changes in the relative energy are necessary for application of 
perturbation theory, but are not sufficient. It is convenient to limit eq 1-6 
through 1-9 to perturbations within an isoelectronic, isonuclear framework, 
and this can be done without loss of generality in several ways. For example, 
AE for the reaction, A-B-A + C-B-C -* 2A-B-C, equals twice the deviation 
of the A-B-C energy from the mean of the A-B-A and C-B-C energies. This 
approach is particularly convenient for analyzing bond energies and bond 
distances (see ref Ic). An alternative, which is well suited for treating 
group-transfer reactions (see ref 45) as well as bond energies, involves adding 
"balancing" structures to achieve an isonuclear, isoelectronic condition. 

(45) Considerable flexibility is possible when choosing these "balancing" 
structures. In the benzene, toluene, or p-xylene example, one choice might 
be benzene + 2CH3-, toluene + CH3- + H-, p-xylene + 2H-. The equations 
given are for closed-shell systems, but adaptation to an open-shell formalism 
is straightforward. The numbers of doubly and singly occupied MO's for these 
three systems are identical, and all three structures of this example are iso
electronic. The character of the singly occupied MO's is appreciably different 
(two methyl radicals, one methyl radical plus one hydrogen atom, two hy
drogen atoms), but this will not necessarily invalidate the application of 
perturbation theory. More serious problems are the changes in fragment 
geometry on transfer. These conceptual difficulties can be alleviated by 
another choice of structures, such as benzene + 2CH3CH3, toluene + CH3CH3 
+ CH3-H, p-xylene + 2CH3-H; the open-shell problem is eliminated, changes 
in nuclear positions and electron densities are minimal, and a closer corre
spondence between orbitals is likely, particularly if localized MO's are com
pared (viz., note that the number of C-C and C-H bonds is independent of 
the perturbation). In fact, the choice of "balancing" structures (e.g., 
2CH3CH3, CH3CH3 + CH3-H, 2CH3-H) is arbitrary when the energy of 
toluene is expressed as the average of benzene and p-xylene plus a deviation. 
The average energy of the benzene balancing structures (2CH3CH3) and the 
p-xylene balancing structures (2CH3-H) is always equal to the energy of the 
toluene balancing structures (CH3CH3 + CH3-H). The deviation from ad-
ditivity is independent of the choice of balancing structures. 

It is also worth pointing out that the applicability of perturbation theory 
does not require that replacement of one group by another result in a small 
change in wave function in the spatial region occupied by the original sub-
stituent. The important factor is not that a fragment has moved to a new 
region of space (as in benzene + 2CH3CH3 -* toluene + CH3CH3 + CH3-H 
-* p-xylene + 2CH3-H), but the extent to which the structure of the fragment 
is perturbed by that movement. See footnote 41 for further discussion. 

considering C-C as the unperturbed reference state and A-A as 
the double perturbation. As a result, the nuclear forces49 in C-A 
will vanish if: (a) C-A is hemistructural to A-A and C-C; (b) 
nuclear forces in A-A and C-C vanish; (c) the changes in MO 
coefficients are due to independent contributions from independent 
changes in nuclei; (d) the separate vanishing condition applies to 
A-A and C-C.49 F1(I1T) represents the extra force on one of the 
left-hand nuclei in C-C due to a change in the right-hand fragment 
from A to C. Since F1(Ij) equals zero, the left-hand nucleus does 
not experience any new force due to the change on the right in 
going from A to C. The change in force due to new nuclear 
charges and positions is precisely cancelled by the change in force 
due to the new distribution of electron density. Consequently, 
the left-hand nucleus in C is responding to the same forces in C-A 
as in C-C, as long as conditions a-d are in effect. This result 
provides further insight into the breakdown of the equivalent group 
concept: maintaining an equilibrium geometry when fragments 
are replaced in a molecule depends on whether or not redistribution 
of electron density can exactly offset changes in the force field 
due to new nuclear charges and positions; given conditions a-d, 
such cancellation is possible at the hemistructural geometry, but 
there is no requirement that the electronic reorganization is 
necessarily limited to the spatial region associated with any 
particular fragment. As a result, a fragment may exhibit an 
effectively constant "covalent radius"1 in spite of possible changes 
in electron density. 

Forces in the molecules ABA, CBA, and CBC can be examined 
in a similar manner. The force on a specific nucleus in the 
left-hand "A" fragment of ABA is given by 

OCC 

ZAiM/ + ^B + JVA,) + 2Z B0XX = 0 (11-11) 

(46) Equation 1-9 can be put in the form A-b = V where V is a vector with 
components J^iH/^fil^L •> is a vector of the new coefficients, b„$, and A 
is a matrix whose elements contain the terms Y.iILjT.kY.1 "Iflljo"^,! 9</w- A 

is independent of the perturbation. The dimension of V is equal to m(n - 1) 
where n is the number of basis functions and m is the number of occupied 
orbitals. For the perturbation from A-B-A to A-B-C, V can be defined as 
Vjigt,, while for the perturbation A-B-A to C-B-A, V can be defined as Vlefl. 
Solving A-b = Vnght gives b = b ^ t as a solution. For V = Vkf„ b = b,^. When 
A-B-C is hemistructural to A-B-A and C-B-C, V is given by V = Vrifht + 
Vlrft for the perturbation A-B-A to C-B-C. Solving A-b = Vright + V]eft gives 

•> = bright + Kit-
(47) Zero force on each nucleus may correspond to an energy maximum. 

There may also be other nuclear configurations in which the net force on each 
nucleus is zero. 

(48) (a) R. P. Feynman, Phys. Rev., 56, 340 (1939); (b) H. Hellmann, 
"Einfuhrung in die Quantenchemie", Franz Deuticke Co., Leipzig, 1937. 

(49) First, consider a zero force homonuclear diatomic, D-D, and the 
diatomic, D-E0, where D is placed at the hemistructural position defined from 
D-D and the position of E° is optimized to produce a zero force structure. 
The force on E0 is given by 

Ff(i) = 0 (IMOa) 

The force on F° in diatomic, F°-D, where D is placed at the hemistructural 
position and the position of F° is optimized to give a zero force structure, is 
given by 

Ff(I) = 0 (IMOb) 

The force on E° in the diatomic F-E0 (E0 located at the hemistructural 
position defined from D-E0) is given by 

Ff(T) + Ff(T,I) = F, (IMOc) 

and from eq IM 0a, a zero force condition with respect to E0 requires 

ffE'(r,/) = 0 = F, (IMOd) 

This result is valid for any mononuclear fragment, F, which can pair with E0 

to produce a zero force structure. Note that eq IM0a,c,d are still valid if 
F-E° is shifted to a new position so that E0 no longer occupies the hemi
structural position defined from D-E0. Consequently, the separate vanishing 
of the two force terms is required for any zero force structure containing E0: 

Ff(I) = FP\r,[)= F, = 0 (IMOe) 

The force on F° in the diatomic F°-E (F" located at the hemistructural 
position defined from F°-D) is given by 

F0*'(D + fiF'E(',r) = F1 (IMOf) 
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A similar expression for a given nucleus in the left-hand "C" 
fragment of CBC is given by 

OCC 

2E[a»VSaJ + 2<VSaJ + 2a£Vga° + a< Vn̂ aJ1 + 2aiv£ a£ + 

•JVgay + Zc;(7Vc; + 7V8 + /VAr + SNCr) = O (11-12) 

Vn^ is a function only of the coordinates of one specific nucleus 
in the left " C fragment of CBC, while a°, aj,, and a£ include a 
functional dependence on the nuclear charges and positions of the 
"B" nuclei. Consequently, eq 11-12 can be separated into the 
analog of eq II-7 

F08(Z) + F1B(/,r) = O (11-13) 

where F03(I) equals 

Fm(l) = 
OCC 

2E[a°V£a° + 2aiVSa« + a ^ t y ] + Za(Na + N3 + WAr) 

(11-14) 

and F1B(/,r) equals 
OCC 

F13(Lr) = 2 E [2a£Vga° + 2aiV£a|i + aJVga;] + Zc,(6yVCr) 

(11-15) 

Using the property49'50 that F03(I) and F1B(/,r) vanish separately, 
it is apparent that forces on the "C" nuclei are zero in CBA. 
Likewise, it can also be shown that the forces on "A" in CBA are 
zero by using CBC as the unperturbed reference and ABA as the 
double perturbation. In order for CBA to be an equilibrium (or 
zero force) structure, it must also be shown that the forces on the 
"B" nuclei vanish.50 

and from II-10b, a zero force condition with respect to F0 requires 

FfHLt) = O = F1 (II-1 Og) 

Again, this result is valid for any mononuclear fragment, E, which can pair 
with F0 to produce a zero force structure. Consequently, the separate van
ishing of the two force terms is required for any zero force structure containing 
F0: 

IV(I) = FTHLT)' F1 = O (IMOh) 

A zero force structure for F°-E° requires satisfaction of both IMOe and 
IMOh which are equivalent to the separate vanishing condition 

Ff(D = f P ' C r ) = T M = fT°E°(r,/) = 0 (IMOi) 

This result establishes that the two force terms in eq IMOc and IMOf vanish 
separately at any zero force geometry for arbitrary F°-E°. 

The force equations shown above involve displacements of the atomic 
fragments in any of the three Cartesian directions. The force can also be 
expressed in terms of the energy gradient with respect to any suitable coor
dinate, and for polynuclear fragments it is useful to consider coordinates which 
include movement of the fragment as a whole in the X, Y, or Z directions as 
well as coordinates describing internal changes in bond lengths and bond 
angles. The treatment of the internal coordinates involves a number of subtle 
points and will require full development elsewhere, but displacements of the 
individual fragments as intact units can be handled like displacements of 
individual atoms. Equations IMOa through IMOi are still applicable for 
forces associated with displacement of polynuclear E°, E, F0, and F fragments. 

It is useful to note that the separate vanishing condition is reference de
pendent and requires at least one zero force geometry for D-E0 and F°-D. 
For the present application (A-A, C-A, C-C), this is equivalent to the re
quirement that D-C and A-D have at least one zero force geometry. If this 
condition is met, then zero force geometries for A-A, A-C, and C-C require 
the separate vanishing of the F0 and F1 force terms. Note that if F0 and F1 
vanish separately for C-C and A-A using D-D as reference, then F0 and F1 
also vanish separately for C-C (A-A) using A-A (C-C) as reference. 

(50) Equations IMOa through IMOi can be used to show that, using the 
zero force structure D-D as reference, the two force terms associated with 
D1 or D2 in the zero force structure D1-D2 vanish separately. A similar result 
holds for the two force terms associated with E1 or E2 in the zero force 
structure, E1-E2. These results can be applied to the zero force structures 
A-B-A = (A-B)-A = E1-E2 and C-B-C = (C-B)-C = D1-D2. Note that 
it has been implicitly assumed that the nuclear coordinates of the "B" frag
ment are the same in ABA and CBC. 
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The force on a "B" nucleus in ABA is given by 
OCC 

2 E [ a W + Z B ( ^ A , + JVA; + ^ B ) = 0 (II-16) 
M 

and eq 11-17 gives the force (dE/dXm)3 on a "B" nucleus in CBC 
OCC 

2Z[^0XX + 28J1VnV
0 + 2a;V»a° + *'M + 2a^Vn

B
eai + 

»;V>>y + 2^(NM + &NCt + NM + SN01 + ^ B ) = 
(d£ /d* m ) B (11-17) 

Separating eq 11-17 into terms based on /, r, and B dependence, 

(d£/d* m ) B = F0(B) + F1(AB) + F2(r,B) + F3(/,r,B) (11-18) 

where 

OCC 

F0(B) = 2Z[a2VB
ea°] + Z3(NM + NAI + N3) = 0 (11-19) 

OCC 

F1(Z1B) = 2 £ [2aiV"ag + z'X^] + Z3(SNa) (11-20) 

OCC 

F2(r,B) = 2E[2a^VB
ea° + a^VB

ea^] + Z3(SN0,) (11-21) 

OCC 

F3(/,r,B) = 4 E a X a j ; (11-22) 
M 

At this point it would be useful to reflect on the significance 
of this force analysis. First, it has been shown that within the 
limitation of first-order coefficient corrections, the force on a 
particular nucleus in C-C can be divided into two or more terms 
(e.g., eq II-7 through eq II-9). If a zero force structure for C-C 
exists, then each separate force term49 must vanish. One of these 
terms is also the force on the corresponding nucleus in C-A at 
the hemistructural geometry, and from this it follows that if C-C 
and A-A are zero force structures, then C-A will also be a zero 
force structure at the hemistructural geometry. The separate 
vanishing of each force term represents a constraint on the behavior 
of the coefficients a£ and aj,, and if the constraint cannot be met, 
no zero force structure is possible within the first-order pertur
bation framework. Achieving a zero force structure may require 
more complicated electronic reorganization than allowed by 
first-order changes in the wave function. Higher level pertur
bations may eventually lead to a breakdown of coefficient ad-
ditivity (eq 16), and the simple transferability of the force terms 
between the hemistructural molecule and the parent structures 
(eq II-7-10) will not apply. As a result, the hemistructural ge
ometry may no longer correspond to a zero force structure.15 

Similar remarks apply to the A-B-A, C-B-A, and C-B-C cases, 
and the circumstances which permit simultaneous realization of 
conditions b and c (vide supra) will require further examination. 

The possibility that first-order perturbations may not allow 
separate vanishing of F1(Z1B), F2(r,B), and F3(/,r,B) is worth 
considering. In the case of F1(Z1B) and F2(r,B), balance between 
electronic and nuclear terms can be achieved by variations in the 
coefficients as well as internuclear distances. However, F3(/,r,B) 
contains only nuclear-electron attraction terms and lacks nuclear 
repulsion terms to cancel them out. Separate vanishing of F1(LB), 
F2(r,B), and F3(/,r,B) can occur only to the extent that the sec
ond-order electronic terms, 4J^aJ1V8JaJ1 (eq 11-22) are zero. 
Consequently, we have the interesting result that the nuclear forces 
on the "A" and "C" fragments of CBA can be zero through the 
full second-order terms, while the forces on the "B" nuclei can 
be zero only through first-order and part of the second-order terms. 

The fact that the hemistructural relationship may break down 
for the "B" nuclei before it does for the "A" and "C" nuclei could 
have important consequences for group transfer reactions such 
as C-B + A ^ C + B-A where ABA, CBA, and CBC are 
transition states. If the C-A distance is hemistructural, while B 
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is shifted off of the hemistructural position toward C, for exam
ple,52 the C-B bond in CBA would be shorter (and stronger) than 
the C-B bond in CBC. This decrease in length for C-B would 
come at the expense of the B-A bond in CBA which would be 
longer (and weaker) than in ABA. The total bond length, C-B 
plus B-A, would be constant. The situation is somewhat analogous 
to Johnston's51 proposal concerning the conservation of bond order 
in transition states of atom-transfer reactions, where the bond order 
of one bond may be greater than '/2> while the bond order of the 
other is less than '/2 . The total bond order is always conserved 
at unity. The speculation that Johnston's empirical principle of 
bond-order conservation may have its origins in a partial break-

(51) H. S. Johnston and C. Parr, J. Am. Chem. Soc, 85, 2544 (1963). 
(52) Lateral displacements along the A-C bond axis, as well as perpen

dicular displacements, may be possible. 

Introduction 

Interaction of Alkyl Groups with Charged Centers. The question 
of how alkyl groups interact with anionic and cationic centers is 
one which has occupied organic chemists for decades.2"10 While 

(1) (a) University of California, (b) Stanford University. 
(2) W. A. Sweeney and W. M. Schubert, J. Am. Chem. Soc, 76, 4625 

(1954). 
(3) (a) D. H. Aue, H. M. Webb, and M. T. Bowers, J. Am. Chem. Soc, 

94, 4726 (1972); (b) ibid., 98, 318 (1976). 
(4) J. I. Brauman and L. K. Blair, J. Am. Chem. Soc, 92, 5986 (1970). 
(5) (a) E. M. Arnett, L. E. Small, R. T. Mclver, Jr., and J. S. Miller, J. 

Am. Chem. Soc, 96, 5638 (1974); (b) R. W. Taft, J. F. Wolf, J. L. Beau-
champ, G. Scorrano, and E. M. Arnett, ibid., 100, 1240 (1978). 

(6) W. M. Schubert and D. F. Durka, J. Am. Chem. Soc, 91, 1443 (1969). 
(7) A. Himoe and L. M. Stock, J. Am. Chem. Soc, 91, 1452 (1969). 
(8) A. Streitwieser, Jr., W. B. Hollyhead, A. H. Pudjaatmaka, P. H. 

Owens, T. C. Kruger, P. A. Rubenstein, R. A. Macquarrie, M. L. Brokaw, 
W. K. C. Chu, and H. M. Niemeyer, J. Am. Chem. Soc, 93, 5088 (1971). 

(9) J. E. Leffler and E. Grunwald, "Rates and Equilibria of Organic 
Reactions", Wiley, New York, 1963. 
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down of the hemistructural relationship is currently under ex
amination. 
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many anomalous phenomena in organic chemistry can be treated 
in terms of two competing effects, the description of alkyl sub-
stituent effects has "required" at least half a dozen. These include 
polarizability, hybridization, the field effect, the inductive effect, 
hyperconjugation, and steric hindrance. As a further complication, 
the relative substituent effects of alkyl groups often show inversions 
in going from one solvent to another6,7 and to the gas phase,3"5 

and reversals of kinetic and thermodynamic effects have been 
reported.8 The results of the present investigation are of interest 
since it has proved possible to measure the alkyl substituent effect 
on the rates of identity reactions (where no thermodynamic 
contribution occurs since ApAT = 0) and to obtain a kinetic sub
stituent effect free of any thermodynamic component due to a 
change in AG" of the reaction. 

The Question of Aggregation of Fluorenyllithium Derivatives 
in Ether. Since the kinetic and equilibrium measurements have 
been carried out at relatively high concentration (0.2-0.4 M) in 
a relatively nonpolar solvent (ether), it is important to determine 
whether aggregation is exerting a significant influence on the rates 
and p^Ts. Concentration effects are known to be important for 

Proton-Transfer Reactions between 9-Alkylfluorene and 
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Abstract: The rates of proton-transfer reactions between 9-substituted fluorenes and 9-substituted fluorenyllithium have been 
examined in ether at 25 and 71 0C. A high primary isotope effect (kH/kD = 9.5) and substantial secondary kinetic (1.11 
± 0.04) and equilibrium (1.19 ± 0.04) isotope effects are observed for fluorene. Surprisingly, intermolecular steric effects 
seem to play only a minor role in spite of the fact that the alkyl groups are located directly at the carbon involved in the proton 
transfer. The barriers for the endergonic cross reactions (i.e., those involving different alkyl groups in the anion and hydrocarbon) 
are half of the sum of the barriers for the two corresponding identity reactions (i.e., those involving the same alkyl groups 
in the anion and hydrocarbon). This leads to Bronsted slopes which vary from 0.7 for reactions of fluorenyl anion to 1.8 for 
reactions of 9-(tert-butyl)fluorenyl anion. The rates of the identity and cross reactions give approximate linear correlations 
with each other and with ApK and are dominated by an effect which correlates with cr*. The substituent effect correlated 
by a* is inconsistent with a classical field or repulsive steric effect and may originate from solvation effects. The thermodynamic 
and kinetic relationships between the identity and cross reactions show that the transition states for the cross reactions are 
only responding to half of the substituent effect on the identity reactions and that the substituent effect on the equilibria appears 
absent from the cross-reaction transition states. The results can be consistent with Marcus' theory only if the substituent effect 
on the equilibria appears in steps separate from proton transfer. The results suggest that changes in solvation and proton 
transfer occur as discrete kinetic steps. 

0002-7863/82/1504-0600S01.25/0 © 1982 American Chemical Society 


